(a	(i)	have same molecular formula / both are C ₅ H ₁₂ they have different structural formulae / different structures	[1] [1]
	(ii)	CH ₃ -CH ₂ -CH=CH-CH ₃ / any other correct isomer	[1]
(b) (i)	CH ₂ -(Br)-CH ₂ Br NOT : C ₂ H ₄ Br ₂ dibromoethane NOTE : numbers not required but if given must be 1, 2	[1]
	(ii)	CH ₃ -CH ₂ -CH ₃ NOT: C ₃ H ₈ propane	[1] [1]
	(iii)	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ butanol numbers not required but if given must be correct and match formula	[1] [1]
(с)	CH ₃ -CH=CH-CH ₂ -CH ₃ CH ₃ -CH=CH-CH ₃	[1] [1]
	(ii)	pink / purple colourless NOT: clear	[1] [1]
(d	cor CO	H ₂ -CH(CN)-CH ₂ -CH(CN)- rect repeat unit CH ₂ -CH(CN) ND : at least 2 units in diagram itinuation	[1] [1]

[Total:16]

2	(a	(i)	contains <u>only</u> carbon, hydrogen and oxygen hydrogen (atom) to oxygen (atom) ratio is 2:1 ALLOW : C:H:O as 1:2:1 or $C_n(H_2O)_n$	[1] [1]
		(ii)	condensation polymerisation	[1]
	(b)	(i)	cells / micro-organisms / plants / animals / metabolic reactions obtaining energy from food / glucose / nutrients	[1] [1]
		(ii)	$2C_2H_5OH + 2CO_2$ allow: C_2H_6O for C_2H_5OH not balanced = (1) only	[2]
		(iii)	to prevent aerobic respiration / to get anaerobic respiration / to prevent ethanoic ac lactic acid / carboxylic acids being formed / to prevent oxidation of ethanol	id / [1]
	(c)	NO	played formula of methyl butanoate TE: all bonds must be shown TE: award (1) if error in alkyl groups but correct displayed structure of –COO–	[2]
	(d)	(i)	alcohol, e.g. glycerol, circled ALLOW : if only part of glycerol molecule is circled as long as it involves an OH group	[1]
		(ii)	saturated correct reason based on group $C_{17}H_{35}$ / all C–C bonds / no C = C bonds	[1]
		(iii)	salt / carboxylate / alkanoate (making) soap ACCEPT: detergent / washing	[1] [1]
	(e)	con	east one correct amide linkage –CONH– tinuation shown at both ends of chain gram showing three (different) amino acid residues	[1] [1] [1]

[Total: 18]

```
(a (i) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH
                                                                                                             [1]
          NOT: C<sub>3</sub>H<sub>8</sub>O
          between 2030 and 2050
                                                                                                             [1]
    (ii) C_5H_{11}OH + 7\frac{1}{2}O_2 \rightarrow 5CO_2 + 6H_2O
                                                                                                             [1
(b) any three from:
     same general formula
     same functional group
     same chemical properties
     same methods of preparation
     accept consecutive members differ by CH2
                                                                                                             [3]
(c)
          same molecular formula
                                                                                                             [1]
          different structures / different structural formulae
                                                                                                             [1]
    (ii) CH<sub>3</sub>-CH<sub>2</sub>-CH(OH)-CH<sub>3</sub> / (CH<sub>3</sub>)<sub>3</sub>C-OH
(d)
          number of moles of glucose = 72/180 = 0.4
                                                                                                             [1]
          maximum number of moles ethanol = 0.8
                                                                                                             [1]
          maximum mass of ethanol, M_r = 46 \,\mathrm{g}, 0.8 \times 46 = 36.8 \,\mathrm{g}
                                                                                                             [1
          180(g) produces 2 \times 46 = 92(g)(1)
          (72(g) \text{ produces}) 72/180 \times 92 (1)
          = 36.8(g)(1)
    (ii) crack (petroleum or alkane)
                                                                                                             [1]
          react with water / hydrate (ethene to make ethanol)
                                                                                                             [1]
          conditions for cracking
          (temperature) 450to 800°C / (catalyst) zeolites / aluminosilicates / silica / aluminium
          oxide / alumina / china / broken pot / chromium oxide
          conditions for hydration
          (temperature) 300 °C / (pressure) 60 atmospheres /
          (catalyst) phosphoric acid
                                                                                                             [1]
```

[Total: 15]

3

4 (a (i) CH_2/H_2C [1]

- (ii) same ratio of C:H (atoms) / all cancel to CH₂ / because general formula is C_nH_{2n} / same ratio of atoms or elements (in the compound) / C:H ratio is 1:2; [1]
- (b) (i) propanoic / propionic (acid); [1] ethanoic / acetic (acid);
 - (ii) formula of ethene / but-2-ene / any symmetrical alkene; [1]
- (c) (i) $CH_3CH(Br)CH_2Br$ [
 - (ii) $CH_3CH(OH)CH_3 / CH_2CH_2OH / C_3H_7OH$ [

(d)

$$-\text{[-CH}_2-\text{CH}-\text{]}_{\overline{\mathbf{n}}}$$
 $-\text{[-CH}_3-\text{]}_{\overline{\mathbf{n}}}$

correct unit; [1]

accept: more than one repeat unit continuation bonds at both ends;

continuation bonds at **both** ends; [1]

[3]

(e) if C₅H₁₀ is given award 3 marks;;; if C₁₀H₂₀ is given award 2 marks;; if 1:7.5:5 / 2:15:10 is given award 2 marks;; if 0! other season mark can be awarded for males of 0. (= 2.4/33 =) 0.075 AND males.

in all other cases a mark can be awarded for moles of O_2 (= 2.4/32 =) 0.075 **AND** moles of CO_2 (= 2.2/44 =) 0.05;

$$2C_5H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$$
 [1

accept: multiples including fractions

allow: ecf for correct equation from any incorrect alkene